

📄 Wildlife Camera Trap Maker Kit — Design Brief (v0.1)

🐾 Product Name (TBD)

Autonomous Wildlife Camera Trap Kit

🎯 Product Vision

A **fully autonomous**, **field-deployable**, motion-activated wildlife camera trap designed for conservationists, researchers, and nature enthusiasts. It operates entirely **offline**, supports **mobile proximity-based offloading**, and requires **no user interaction** in the field beyond walking near it.

Designed for:

- * Remote, off-grid locations
- * Long-term wildlife monitoring
- * Scientific data collection
- * Low disturbance, low maintenance deployments

🌐 Design Philosophy

- * **No human disturbance**: No physical contact required after deployment
- * **No network dependence**: Never connects to the internet or cloud
- * **Zero UI field operation**: Haptic-only mobile feedback; no on-device screens or LEDs
- * **Modular and fault-tolerant**: Power systems (battery/solar) and file handling are designed to preserve data above all
- * **Autonomous, energy-conscious design**: Runs in deep sleep, wakes on motion or proximity

📋 Feature Prioritization (MoSCoW Method)

Feature	Priority	Notes
Motion-triggered capture	**Must Have**	Core trap behavior
SD card storage	**Must Have**	Local media archive
Battery power	**Must Have**	Baseline power source
Weatherproofing	**Must Have**	Outdoor operation
Mobile app (offline transfer + config)	**Must Have**	Field access + control
GPS tagging (via phone)	**Must Have**	Accurate observation data
IR night vision	**Should Have**	Important but not blocking MVP
Solar charging	**Should Have**	Power extender, not critical
Web app	**Won't Have**	No network dependency allowed
Image classification (cloud/AI)	**Won't Have (unless local)**	Local-only someday
Livestreaming	**Won't Have**	Incompatible with autonomy goals

Power Strategy

- * **Primary:** Li-ion battery (internal or external)
- * **Optional secondary:** Solar trickle charging
- * **Management:**
 - * Battery voltage monitoring (fuel gauge or ADC)
 - * Configurable behavior profiles based on battery level
 - * Wi-Fi disabled at low power
 - * **Failsafe principle:** Camera prioritizes saving captured media; powers down modules selectively

Offload + Interaction Strategy

Discovery:

- * Phone passively scans via **BLE**
- * Camera advertises presence periodically (e.g. every 30s)

Data Transfer Modes:

- * **BLE (low-power):** Default; slower
- * **Wi-Fi (faster):** Optional; enabled via config
- * **Hybrid:** BLE triggers proximity + transfer decision; device activates Wi-Fi if battery allows

Haptic Feedback:

- * 1 vibration = offload started
- * 2 vibrations = offload complete
- * 3 vibrations = error

Config Sync:

- * Settings set in phone app → sent automatically upon proximity

Mobile App Responsibilities

- * Configure camera settings (resolution, IR, power mode, offload mode, etc.)
- * Detect camera automatically when in range
- * Push settings + fetch media without user input
- * Tag each file with phone GPS + time
- * Store and organize photos/videos
- * Work offline 100% (no network dependencies)

📦 Hardware Architecture (Draft)

Component	Choice
MCU	**ESP32-S3**
Camera	**OV2640** (initially)
Storage	MicroSD card
Power	Li-ion battery + optional solar (via TP4056 or similar)
Motion detection	PIR sensor
Enclosure	Weatherproof, IR-transparent window
Comms	BLE + Wi-Fi (softAP or direct)
Power Monitoring	Voltage divider or I2C fuel gauge

📌 Design Decisions Made

- ✓ Use **BLE-first** with optional **Wi-Fi handoff** for faster transfers
- ✓ GPS tagging will happen via **phone** at time of offload
- ✓ App will be the **only configuration surface** — no buttons, screens, or cloud
- ✓ Adopt **deep sleep with wake-on-timer or motion**
- ✓ Use haptics-only feedback (no visual or sound signals)
- ✓ Modular power design with solar as optional secondary source
- ✓ ESP32-S3 selected as MCU platform

🔧 Open Questions / Future Work

- * Final camera sensor selection (OV5640 or thermal cam later?)
- * Mounting system and anti-tamper mechanisms
- * Advanced power tracking (e.g. max power point tracking solar controller?)
- * Config schema storage (on SD or in EEPROM?)
- * Firmware OTA (only via SD card? or app-assisted?)
- * Researcher dashboard app (non-headless mode)

🗂 Save + Export

You can now:

- * Copy/paste this into a local file (Markdown, DOCX, or PDF)
- * Re-import it into ChatGPT anytime to resume
- * Build off it in any documentation tool

Would you like me to:

- * Format this as a downloadable **Markdown**, **PDF**, or **Google Doc**?
- * Email-style text export?
- * Help create a Git repo or Notion doc for this?

Let me know how you'd like to store or work with it next.